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Abstract. The performance of depth reconstruction in binocular stereo
relies on how adequate the predefined baseline for a target scene is. Wide-
baseline stereo is capable of discriminating depth better than the narrow
one, but it often suffers from spatial artifacts. Narrow-baseline stereo
can provide a more elaborate depth map with less artifacts, while its
depth resolution tends to be biased or coarse due to the short disparity.
In this paper, we propose a novel optical design of heterogeneous stereo
fusion on a binocular imaging system with a refractive medium, where
the binocular stereo part operates as wide-baseline stereo; the refractive
stereo module works as narrow-baseline stereo. We then introduce a
stereo fusion workflow that combines the refractive and binocular stereo
algorithms to estimate fine depth information through this fusion design.
The quantitative and qualitative results validate the performance of our
stereo fusion system in measuring depth, compared with homogeneous
stereo approaches.

1 Introduction

Classical stereo matching algorithms employ a pair of binocular stereo images.
Such stereo algorithms estimate depth by evaluating the distance of corresponding
features, so-called disparity, via computing matching costs and aggregating the
costs [1]. However, owing to the nature of triangulation in estimating depth,
the depth accuracy strongly depends on its baseline between the stereo pair.
For instance, a wide baseline elongates the range of the correspondence search
so that the matching problem cannot be solved with high precision in typical
locally-optimizing approaches [2]. On the contrary, a narrow baseline shortens
the resolution of disparity; therefore, the accuracy of estimated depth could be
degraded [3, 4].

Recently, Gao and Ahuja [5, 6] introduced a single depth camera based on
refraction. Chen et al. [7] further extended this refractive mechanism. Such
refractive stereo systems estimate depth from the change of light direction;
therefore, the disparity in refractive stereo in general is smaller than that in
binocular stereo, i.e., its performance is similar to that of binocular stereo with a
narrow baseline. We take inspiration from refractive stereo to combine these two
heterogeneous stereo systems, where a stereo fusion system is designed with a
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Fig. 1: (a) A binocular stereo detects depth accurately; whereas, it suffers from
spatial artifacts caused by occlusions and featureless regions. (b) A refractive
stereo improves the spatial resolution with less artifacts, but its depth resolution is
coarse with fewer steps yet. (c) Our stereo fusion significantly improves the spatial
and depth resolutions by combining these two heterogeneous stereo methods.

refractive medium placed on one of the binocular stereo cameras. In this paper,
we introduce a novel optical design that combines binocular and refractive stereo
and its depth process workflow that allows us to fuse heterogeneous stereo inputs
seamlessly to achieve fine depth estimates. Fig. 1 shows a brief overview of our
method.

2 Related Work

In this section, we briefly overview recent depth-from-stereo algorithms that are
the most relevant to our work.

Multi-Baseline Stereo. Okutomi and Kanade [3] proposed a multi-baseline
stereo method. The proposed system consists of multiple cameras on a rail.
Gallup et al. [8] estimated the depth of the scene by adjusting the baseline
and resolution of images from multiple cameras so that the depth estimation
becomes computationally efficient. Nakabo et al. [9] presented a variable-baseline
stereo system on a linear slider. They controlled the baseline of the stereo system
depending on the target scene for estimating the accurate depth map.

Zilly et al. [4] introduced a multi-baseline stereo system with various baselines.
Four cameras are configured in multiple baselines on a rail. The two inner cameras
establish a narrow-baseline stereo pair while two outer cameras form a wide-
baseline stereo pair. We take inspiration from this work [4] to extend the multiple
baseline idea, i.e., we extend the structure of traditional binocular stereo by
adopting a refractive medium to one of the cameras. The camera viewpoints in the
multi-baseline systems are secured mechanically at fixed locations in general. This
design restricts the spatial resolution along the camera array while reconstructing
the depth map. In contrast, our fusion system controls the baseline dynamically by
rotating the medium. Our system requires a smaller space to operate consequently
while acquiring input than the multi-baseline stereo systems.
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Refractive Stereo. Nishimoto and Shirai [10] first introduced a refractive
camera system by placing a refractive medium in front of a camera. Their method
estimates depth using a pair of a direct image and a refracted one, assuming that
the refracted image is equivalent to one of the binocular stereo images. Lee and
Kweon [11] presented a single camera system that captures a stereo pair with a
bi-prism. Gao and Ahuja [5, 6] proposed a seminal refractive stereo method that
captures multiple refractive images with a glass medium titled at different angles.
The rotation axis of the titled medium is mechanically aligned to the optical axis
of the camera. Shimizu and Okutomi [12, 13] introduced a mixed approach that
combines the refraction and the reflection phenomena. This method superposes a
pair of reflection and refraction images via the surface of a transparent medium.
Chen et al. [7, 14] proposed a calibration method for refractive stereo. This
method finds the pairs of matching points on refractive images with the SIFT
algorithm [15] to estimate the pose of a transparent medium. In this paper, we
adopt an optical hardware structure of refractive stereo [6] and combine it on a
binocular stereo base.

3 Light Transport in Stereo

3.1 Baseline vs. Disparity

Binocular disparity describes pixel-wise displacement of parallax between cor-
responding points on a pair of stereo images taken from different positions.
Therefore, it is natural that computing the disparity is accompanied with search-
ing the corresponding points on an epipolar line. As disparity d depends on its
depth, we can recover a depth z as:

z = fb/d, (1)

where f is the focal length of the camera lens; b is the distance between the
cameras, the so-called baseline. As shown here, the disparity is proportional to
the baseline, i.e., when the baseline is wide, the range of disparity increases.

Wide-baseline stereo reserves more pixels for disparity than narrow-baseline
stereo does. Therefore, wide-baseline systems can discriminate depth with a higher
resolution. On the other hand, the search range of correspondences increases,
and in turn, it increases the chances of false matching. Although the estimated
disparity maps are plausible in terms of depth, but it contains many empty
regions, where the depth values were not correctly estimated for occlusion and
false matching. It is frequently observed in homogeneous regions and heavily-
textured regions, where the corresponding point search fails.

Narrow-baseline stereo has a relatively short search range of correspondences.
Hence, the false matching rarely happens so that we can achieve the accuracy
and efficiency in the cost computation. In addition, the level of spatial noise
in the disparity map is low, as the occluded area is small. However, narrow-
baseline stereo reserves a small number of pixels to discriminate depth. The
depth-discriminative power decreases accordingly. It trades off the discriminative
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power for the reduced spatial artifacts in the disparity map. Note that refractive
stereo presents a smaller disparity than traditional binocular stereo because
it creates the disparity from the change of the light direction by refraction.
Therefore, we regard refractive stereo as being equivalent to narrow-baseline
stereo in terms of disparity in this work.

3.2 Depth from Refraction

Our stereo fusion system includes a refractive stereo module on a binocular stereo
architecture. Refractive stereo estimates depth using the refraction of light via
a transparent medium. There has been several studies that tried to formulate
the geometric relationship between refraction and depth [6, 7]. Here we briefly
formulate the foundations of general depth estimation from refractive stereo.

Suppose a 3D point p in a target scene is projected to pd on an image plane
through the optical center of an objective lens C directly without any transparent
medium (Fig. 2a). Inserting a transparent medium in the light path changes the
transport of the incident beam from p and reach at pr on the image plane with
a lateral displacement d (between w/ and w/o the medium). The displacement
between pd and pr on the image plane is called refractive disparity.

Now we formulate the depth z of p using simple trigonometry: z = fR/r,
where r is a refractive disparity, found by searching a pair of corresponding points;
f is the focal length; R = d/sin (θp) is the ratio of lateral displacement d to sin(θp).

Here θp is the angle between
−−→
prC and the image plane. cos (θp) can be computed

by the normalized dot product of −→pre and
−−→
prC (Fig. 2b). Lateral displacement d,

the parallel-shifted length of the light passing through the medium, is determined
as [16]:

d =

(
1−

√
1− sin2 (θi)

n2 − sin2 (θi)

)
t sin (θi) , (2)

where t is the thickness of the medium; n is the refractive index of the medium;
θi (the incident angle of the light) can be obtained by computing cos (θi) as the

normalized dot product of
−−→
Cpr and

−→
Ce. The refracted point pr lies on a line,

the so-called essential line, passing through an essential point e (an intersecting
point of the normal vector of the transparent medium to the image plane) and
pd (Fig. 2b). This property can be utilized to narrow down the search range of
correspondences onto the essential line, allowing us to compute matching costs
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Fig. 2: (a) Cross-section view of the light path in refractive stereo. (b) A close-up
view of the refractive light transport in 3D.
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efficiently. It is worth noting that disparity in refractive stereo depends on not
only the depth z of p but also the projection position pd of light and the position
of the essential point e, whereas the disparity in traditional stereo depends on
only the depth z of the point p. Prior to estimating a depth, we calibrate these
optical properties in refractive stereo in advance. See Sec. 4.2 for calibration.

4 System Implementation

4.1 Hardware Design

Our stereo fusion system consists of two cameras and a transparent medium on a
mechanical support structure. The focal length of the both camera lenses is the
same as 8 mm. The cameras are placed on a rail in parallel with a baseline of 10 cm
to configure binocular stereo. We place a transparent medium on a rotary stage
for refractive stereo in front of one of the binocular stereo cameras. See Fig. 3
for our hardware design. Note that this refractive stereo module is equivalent
to narrow-baseline stereo while the binocular stereo structure is equivalent to
wide-baseline stereo in our system.

Our transparent medium is a block of clear glass. The measured refractive
index of the medium is 1.41 (n = sin(20◦)/ sin(14.04◦)); the thickness of the
medium is 28 mm. We built a customized cylinder to hold the medium, cut in 45◦

from the axis of the cylinder. We spin the titled medium about the optical axis
from 0◦ to 360◦ in 10◦ intervals while capturing images. The binocular stereo
baseline and the tilted angle of the medium are fixed rigidly while capturing.

4.2 Calibration

Our stereo fusion system requires several stages of calibration prior to the depth
estimation. This section summarizes our calibration processes.

Camera 
holder 

Camera Medium 
holder 

Camera 

Rotary 
stage 

p 

Trans. 
medium 

Refractive stereo of short baseline Long-baseline stereo (b) (a) 

Fig. 3: (a) The schematic diagram of our stereo fusion system. A point p is
captured by both the refractive stereo and the binocular stereo module. (b) Our
system prototype.
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Geometric Calibration. We first calibrate the extrinsic/intrinsic parameters
of the cameras, including the focal length of the objective lens, the center point of
the image plane and the lens distortion in order to convert the image coordinates
to the global coordinates. This allows us to derive an affine relationship between
the two cameras and rectify the coordinates of these cameras with respect to the
constraint epipolar line [17].

Refractive Calibration. Refractive stereo requires additional calibrations of
the optical properties such as glass thickness, the refractive index and the essential
point. Here we describe the calibration detail of the essential points. Analogous
to the epipolar line in binocular stereo, refractive stereo forms an essential point
e, where the essential lines forge to the essential point e outside the image plane,
i.e., a refracted point pr passes through a unrefracted pixel pd and reaches the
essential point e on the essential line (see Fig. 2b).

Gao and Ahuja [5, 6] estimate the essential point by solving an optimization
problem with a calibration target at a known distance. They precomputed the
positions of the essential points for all angles by manually adjusting the normal
axis of the glass, so that the accuracy of estimating the essential points does
not depend on a target scene. Chen et al. [7] directly estimate the essential
point on target scene images with a fact that the all essential lines meet at the
essential point. They estimated the position of the essential point by computing
intersection points of lines passing through each matching point on the superposed
images with and without the medium. This method is considerably simpler than
solving the optimization problem [5, 6]; however, searching corresponding features
with SIFT [7] is not consistent often such that the calibration accuracy is bound
to the SIFT performance.
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Fig. 4: (a) presents the calibrated results of the 36 essential points (blue dots)
in our system. (b) shows an example of the locations of 36 refracted points
(orange dots) from a direct point (w/o the medium, red point) in the coordinates
of (763,229) at a distance of 30 cm. The location of the direct point has been
refracted to 36 different positions per rotation due to refraction.
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Our calibration method takes advantages of the both methods [6, 7] to estimate
the essential points with 36 poses of the refractive medium on the rotary stage
in advance. We take an image of a checkerboard without the medium once to
compare it with other refracted images in different poses of the medium. Once
we take a refracted image in a pose, we extract corner points from the both
direct and refracted images following the proposed method in [6]. Note that the
same feature points appear at different positions due to refraction. Superposing
these two images, we draw lines by linking the corresponding points with all
feature corners with the fact observed by Chen et al. [7]. We then compute the
arithmetic mean of the coordinates of the intersection points to determine an
essential point per rotation angle. We repeat this process with the 36 rotation
poses of the medium predetermined in 10-degree intervals. See Fig. 4.

Color Calibration. Matching costs are calculated by comparing the intrinsic
properties of color at the feature points. Since we introduce a transparent medium
on a camera in binocular stereo, it is critical to achieve consistent camera
responses with and without the medium. To do so, we employ a GretagMacbeth
ColorChecker target of 24 color patches. Two sets of linear RGB colors, A and
B (cameras with and without the medium with inverse gamma correction), are
measured from the both cameras. We determine a 3× 3 affine transformation M
of A to B as a camera calibration function using least-squares [18]. We apply this
color transform M for the linear colors through the medium, acquiring consistent
colors through the medium.

5 Depth Reconstruction in Stereo Fusion

Our stereo fusion workflow consists of two main steps. We first estimate an
intermediate depth map from a set of refractive stereo images (from the camera
with the medium) and reconstruct a virtual direct image. Then, this virtual image
and a direct image (from the other camera without the medium in a baseline)
are used to estimate the final depth map referring to the intermediate depth map
from refractive stereo. Fig. 5 overviews the workflow of our stereo fusion method.

5.1 Depth from Refraction

Depth reconstruction from binocular stereo has been well-studied including match-
ing cost computation, cost aggregation, disparity computation, and disparity
refinement [1], whereas depth reconstruction from refraction has been relatively
less discussed. In this section, we describe our approach for refractive stereo for
reconstructing an intial depth map.

Matching Cost in Refractive Stereo. General binocular stereo algorithms
define the matching cost volumes of every pixels per disparity [1], where a disparity
implies a certain depth directly in binocular stereo. This relationship can be
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Fig. 5: Schematic diagram of our stereo fusion method. (a) Our refractive stereo
method estimates an intermediate depth map from refractive stereo. (b) Our
stereo fusion method reconstructs a final depth map from a pair of an image from
binocular stereo and a synthetic direct image using the intermediate depth map.

applied for all the pixels in the stereo image uniformly. In contrast to binocular
stereo, the length of disparity in refractive stereo changes by not only the depth
but also the coordinates on the image plane and the pose of the medium. It means
that the refracted points of a single direct point could have different refractive
disparities depending on the coordinates on the image plane and the pose of the
medium. We therefore define the matching cost volumes for our refractive stereo
based on the depth, rather than the disparity. This allows us to apply a cost
volume approach for refractive stereo.

Suppose we have a geometric position set P of the refracted points pr(pd, z, e)
of a direct point pd at a depth z (see Fig. 2) with an essential point e (e ∈
E): P (pd, z) = {pr(pd, z, e)|e ∈ E}. This set P can be derived analytically by
refractive calibration (Sec. 3.2) so that we precompute this set P for computational
efficiency.

We denote L as the set of colors observed at the refracted positions P , where
l is a color vector in a linear RGB color space (l ∈ L). Assuming that the surface
of the direct point pd is Lambertian, the colors of the refracted points L(pd, z)
would be the same. We use the similarity of L(pd, z) for the matching cost C of
pd with a hypothetical depth z [19]:

C(pd, z) =
1

|L(pd, z)|
∑

l∈L(pd,z)

K(l − l), (3)

where K is an Epanechnikov kernel [20]: K(l) = 1− ‖l/h‖2 when ‖l/h‖ is less
than or equal to 1; otherwise, K(l) = 0; h is a normalization constant (h = 0.01);
l is computed iteratively in L(pd, z) (for five iterations) using the mean shift
method [21] as:

l̄ =
∑

l∈L(pd,z)

K(l − l̄)l

/ ∑
l∈L(pd,z)

K(l − l̄) . (4)

z in our refractive stereo is a discrete depth, of which range is set between 60 cm
and 120 cm in 3 cm intervals. Note that we build a refractive cost volume per
depth for all the pixels in the refractive image.



Stereo Fusion using a Refractive Medium on a Binocular Base 9

Cost Aggregation for Depth Estimation. In order to improve the spatial
resolution of the intermediate depth map in refractive stereo, we aggregate the
refractive matching cost using a window kernel G. An aggregated cost function
CA is defined as C(pd, z) convolved by a weighting factor G [22]:

CA(pd, z) =
∑
qd∈w

G(pd, qd)C(qd, z), (5)

where qd is a pixel inside a squared window w, of which size is 7 × 7. We
aggregate the refractive matching costs using a Gaussian kernel G(pd, qd), defined
as (1/2πσ2) exp(−(||pd − qd||2)/2σ2), where σ is 9.6. Finally, we compute the
optimal depth Z(pd) of the point pd that maximizes the aggregated matching
costs: Z(pd) = arg max

z
CA(pd, z).

Depth and Direct Image Refinement. Even though the levels of the two
cameras are the same on the rail as traditional binocular stereo, our stereo pair
includes more than horizontal parallax due to the refraction effect. Prior to
fusing the binocular stereo and the refractive depth input, we first reconstruct a
synthetic image Id (a direct image without the medium) by computing the mean
radiance of the set L(pd, Z(pd)) using the mean shift method (Eq. (4)).

Reconstructing the direct image allows us to apply a depth refinement algo-
rithm with a weighted median filter [23] by treating the direct image as guidance
in order to fill in the holes of the estimated depth map. The weighted median
filter replaces the depth Z(pd) using the median from the histogram h(pd, ·):

h(pd, z) =
∑
qd∈w

W (pd, qd)f(qd, z), (6)

where f(qd, z) is defined as 1 when Z(qd) − z is 0; otherwise, f() is 0. W
is a weight function with a guided image filter [24], defined as W (pd, qd) =
1
|w|2

∑
k:(pd,qd)∈wk

(1 + (ld(pd)− µk)(Σk + εU)−1(ld(qd)− µk)), where ld(pd) is a

linear RGB color of pd on the direct image Id; U is an identity matrix; k is the
center pixel of window wk including pd and qd; µk and Σk are the mean vector
and covariance matrix of Id in wk. In our experiments, we set the size of wk as
9× 9, and ε as 0.001.

This median filter allows us to refine the hole artifacts in the depth map
while preserving sound depth. After refining the depth map, the direct image is
reconstructed again with the updated depth map. Fig. 6 shows the result of the
refinement, which are the updated depth map and the direct image.

Optimal Number of Refractive Images. The number of input refractive
images is critical to the quality of depth estimation in refractive stereo. We were
motivated to find out an optimal number of input refractive images so that we
evaluated point-wise errors in estimating depth on a planar surface in a known
distance. Fig. 7b shows that the root-mean-square error decreases very fast while
increasing the number of input up to six refractive images. Hence, we choose the
optimal number of input refractive images as six. Note that we use six refractive
images with 60◦ intervals for capturing results in this paper.
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(a) Initial refractive depth map (b) Refined refractive depth map (c) Synthetic direct image (d) Direct image (ground truth)

Fig. 6: (a) shows an initial depth map and (b) is the refined map with weighted
median filtering. A refracted image is computed as a synthetic direct image (c),
used for binocular stereo later. (c) is compared to a ground truth photograph (d).
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Fig. 7: (a) The red square indicates the area used for finding an optimal number
of input refractive images. The book cover is a planar surface orthogonal to
the camera optical axis with a constant depth. (b) The depth error drops down
fast significantly up to six refractive inputs with different angles. No significant
improvement is observed with more than six inputs.

5.2 Depth in Stereo Fusion

As described in Sec 3.1, our binocular stereo with a wider baseline allows us to
discriminate depth with a higher resolution than refractive stereo (equivalent
to narrow-baseline stereo). We take inspiration from a coarse-to-fine stereo
method [25, 26] to develop our stereo fusion method. Our refractive stereo yields
an intermediate depth map with a high spatial resolution, which is on a par with
narrow-baseline stereo. However, it is not surprising that the z-depth resolution of
this depth map is discrete and coarse on the other hand. We utilize the fine depth
map from refractive stereo in order to increase the z-depth resolution as high as
possible with a high spatial resolution by limiting the search range of matching
cost computation in binocular stereo using the refractive depth map. To this end,
we can significantly reduce the chances of false matching while estimating depth
from binocular stereo between the direct and synthetic images. This enables us
to achieve a fine depth map from binocular stereo, taking advantages of a high
spatial resolution in refractive stereo.

Matching Cost in Stereo Fusion. Now we have a direct image Ib from the
camera without the medium in the binocular module and the synthetic image Id
reconstructed from the refractive stereo module (Sec. 5.1) with its depth map.
Depth candidates with uniform intervals are not related linearly to the disparities
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with pixel-based intervals. We hence define a cost volume for stereo fusion on the
disparity instead in order to fully utilize the image resolution. To fuse the depth
from binocular and refractive stereo, we build a fusion matching cost volume
F (pd, d) per disparity for all pixels as next. The fusion matching cost F is defined
as a norm of the intensity difference: F (pd, d) = ‖ld(pd)− lb(p′d)‖ , where p′d is a
shifted pixel by a disparity d from pd; lb(p

′
d) is a color vector of p′d on image Ib.

Cost Aggregation in Stereo Fusion. The aggregated cost of the fusion
matching costs is defined as:

FA(pd, d) =
∑
qd∈w

W (pd, qd)F (qd, d). (7)

HereW is the bilateral image filter [22] defined asW (pd, qd) = exp(−(d(pd, qd)/σ2
s+

c(pd, qd)/σ2
c ), where d(pd, qd) is the Euclidean distance between pd and qd, c(pd, qd)

is the sum of differences of colors of RGB channels, σs and σc are the standard
deviations for spatial distance and color difference. In our experiment, we select
the window size, σs and σc as 9, 7 and 0.07.

Suppose the depth of point pd is estimated as Z(pd) from refractive stereo.
As we compute the refractive matching cost and aggregate the cost per discrete
depth interval ∆z in refractive stereo, let the actual depth of pd be in between
(Z(pd)−∆z) and (Z(pd) +∆z) as Zprev and Zpost. The corresponding disparities
of Zprev and Zpost can be computed as dprev and dpost using Eq.(1). Note that
dpost is smaller than dprev. We therefore estimate the optimal disparity D(pd) by
searching the aggregated cost volume FA(pd, d) within the range [dpost, dprev] as
below:

D(pd) = arg min
d

FA(pd, d). (8)

We compute Eq.(7) within the range of [dpost, dprev] exclusively for computational
efficiency.

6 Results

We conducted several experiments to evaluate the performance of our stereo
fusion method. We computed depth maps, of which resolution is 1280×960 with
140 depth steps, on a machine equipped with an Intel i7-3770 CPU and 16GB
RAM with CPU parallelization (GPU-based acceleration would be feasible as
future work.) The computation times for estimating the depth map from six
refractive inputs are ∼77 secs. for the first-half stage of refractive stereo and ∼33
secs. for the second-half stage of stereo fusion. The total computation time on
runtime is ∼110 secs. We precomputed the refracted essential points per pixel in
the image plane beforehand for computational efficiency.

The first row in Fig. 9 compares three different depth maps by binocular only
stereo (a), refractive only stereo (b) and our proposed stereo fusion method (c).
Although the depth estimation of binocular only stereo (a) appears sound, (a)



12 Seung-Hwan Baek and Min H. Kim

(a) Depth map from binocular stereo

(b) Depth map from our stereo fusion
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Fig. 8: The binocular depth map (a) includes artifacts due to false matching
caused by occlusions, featureless regions and repeated patterns. Using the interme-
diate refractive depth map (b), we can limit the search range of a corresponding
point pd between dpost and dprev for instance. This significantly reduces false
matching frequency in estimating depth.

suffers from typical false matching artifacts around the edges of the front object
due to occlusion. Refractive only stereo (b), obtained from the intermediate stage
of our fusion method, presents depth without artifacts, but the depth resolution is
significantly discretized and coarse. Our stereo fusion overcomes the shortcomings
of the homogeneous stereo methods. It estimates depth as fine as binocular stereo
without severe artifacts. In addition, we quantitatively evaluated the accuracy of
our stereo fusion method compared with others in Fig. 9d. We measured three
points in the scene using a laser distance meter (Bosch GLM 80) and compared
the measurements by the three methods. The accuracy of our method is as high
as the binocular only method (aver. distance error: ∼2 mm), outperforming the
refractive only method (aver. error: ∼6 mm).

We compare our proposed method with a renowned graphcut-based algo-
rithm [27] with an image of the same resolution. Global stereo methods in general
allow for an accurate depth map, while requiring high computational cost. It
is not surprising that this global method was about eight times slower than
our method (see Fig. 10a). We also compare our method with a local binocular
method [24], which computes the matching cost as the norm of intensity dif-
ference and aggregates the cost using the weight of the guided filter [24]. Its
computing time was ∼212 secs. with the same scene (see Fig. 10b). This local
method struggles with typical false matching artifacts. A refractive method using
SIFT flow [7] is compared to ours (Figs. 10c and 10d). The same number of six
refractive images were employed for both methods. While the refractive method
suffers from wavy artifacts of SIFT flow and its depth resolution is very coarse,
typical to refractive stereo, our method estimates depth accurately with less
spatial artifacts in all test scenes.
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(b) Refractive only stereo(a) Binocular only stereo (c) Our stereo fusion
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(d)

Fig. 9: The top row compares the three different depth maps of binocular only
stereo (a), refractive only stereo (b) and our stereo fusion (c). (d) quantitatively
compares the accuracy of three methods. Three points were measured by a Bosch
laser distance meter. The accuracy of our stereo fusion is as high as binocular
stereo; our depth map does not suffer from artifacts as refractive stereo.

Multi-baseline Stereo. Multi-baseline stereo methods such as trinocular stereo
employ multiple views with various baselines. In this sense, multi-baseline ap-
proach is the most similar method to our approach, where the refractive stereo
is equivalent to the short baseline stereo; the binocular stereo is equivalent to
the long baseline stereo. We built a trinocular stereo setup, where the distance
between the right and the middle camera is set to 2 cm and the distance between
the middle and the left one is set to 11 cm to yield multiple baselines. Fig. 11a
and Fig. 11b presents results of trinocular stereo. Fig. 11a is the result of a multi-
baseline method [3], where two pairs of matching costs are calculated from the
short and the long baseline pairs, and these costs are combined as total matching
cost to yield a depth map. Fig. 11b is another implementation of trinocular stereo.
Similar to our coarse-to-fine approach, we compute matching cost volumes from
the short-baseline stereo pair and aggregate the volumes through the guided filter
to yield an intermediate depth map. We then use this depth map to narrow the
search range of correspondence same as ours. As shown in Fig. 11, our stereo
fusion achieves an more elaborate depth map than the both trinocular stereo
methods. We could speculate that our improvement is feasible as our refractive
method utilizes the oval shape of corresponding points. This oval-shaped patterns
can provide unique signatures in computing the correspondences in our system.

7 Conclusion

We have presented a novel stereo fusion method with an optical design and stereo
fusion algorithm. We validate that our proposed method takes the advantages of
both traditional binocular and refractive stereo. In addition, our fusion design
can be easily integrated into any existing binocular stereo, yielding a significant
improvement in depth accuracy.
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(b) Binocular local stereo (c) Refractive stereo (SIFT flow) (d) Our stereo fusion(a) Binocular global stereo

Fig. 10: The depth maps of three different scenes in each row were computed by
four different methods. The first two columns (a) and (b) show global [27] and
local binocular stereo [24] methods. The third column (c) presents a refractive
stereo method [7]. Our method (d) estimates depth accurately without suffering
from severe artifacts.

(b) Multi-baseline stereo (coarse to fine) (c) Our stereo fusion(a) Multi-baseline stereo (Okutomi and Kanade)

Fig. 11: Multi-baseline stereo methods are compared with our method. (a) is a
depth map using a trinocular stereo method [3]. (b) is also a trinocular stereo
method, implemented with the coarse-to-fine approach same as ours. (c) is the
result of our stereo fusion method with the same number of input images.

However, there are some issues remained as future work. Our current method
requires the rotation of the refractive module at least more than one time for a
depth estimate. Therefore, our method is only allowed for static scenes. Suppose
a depth map from refractive stereo contains errors, these errors remain from the
stereo fusion stage, where we refine the depth resolution of the refractive depth
map using binocular stereo.
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